

SIAECOSYS - SIA155-64 - 96V PMSM motor

Reference : SIA-SIA155-64-96V-29KW

Brand : EVEA

Options :

No variants

3D Model : Not available

EAN-13 : 8468495329445

Manufacturer Part Number (MPN) : SIA155-64 | **Brand:** SIAECOSYS

The **SIA155-64** is a permanent magnet synchronous motor (**PMSM**) with an **IPM** (interior permanent magnet) topology, designed for high power density **mid-drive** architectures in electric mobility platforms. Its rated output (**12 kW**) and peak capability (**29 kW**) target compact traction systems where torque dynamics matter: lightweight e-motorcycles, dirt bikes, go-karts and small electrified vehicles.

The **hairpin** winding technology supports an efficiency- and thermal-oriented stator design, consistent with high-current operation. System integration is typically based on a **FOC (field-oriented control)** inverter, using an **encoder feedback** and a **PWM** command interface on the control side (throttle/torque request depending on the inverter architecture). The integrated **KTY84/130 temperature sensor** enables a structured thermal derating and protection strategy within the power electronics.

Designation: Traction **PMSM (IPM)** **mid-drive** motor with **hairpin winding, 12 kW rated / 29 kW peak, 96 V, spline shaft, encoder, IP67, surface air cooling**.

Key benefits

- **PMSM (IPM) topology:** suitable for FOC drives, enabling accurate torque and speed control for traction.
- **Hairpin winding:** design approach optimized for power density and winding thermal conduction.
- **96 V voltage window:** facilitates integration on high-performance low-voltage battery architectures (recommended range 86–113 V).
- **85 N·m peak torque / 7500 rpm max speed:** balanced torque-speed envelope for primary transmission (chain, belt, gearbox).

- **IP67 + surface air cooling**: suitable for exposed environments, provided the mechanical integration and airflow are consistent.
- **KTY84/130 temperature sensor**: robust basis for derating, diagnostics and stator thermal protection.
- **Spline shaft**: mechanical interface suited to traction constraints (impulse torque and cycling).

Technical specifications

Technology	PMSM (IPM)
Use / type	Mid-drive traction motor
Rated operating voltage	96 V
Recommended voltage range	86 to 113 V
Recommended min / max nominal voltage	60 V / 120 V
Rated power	12,000 W
Peak power	29,000 W
Recommended rated current	125 A (continuous)
Recommended peak current	302 A (burst)
Rated torque	20.0 N·m
Peak torque	85.0 N·m
Rated speed	4000 rpm
Max speed	7500 rpm
Number of pole pairs	4
Winding configuration	Star (Y)
Cogging torque	1.4 N·m
Radial runout	≤ 0.035 mm
Axial play	≤ 0.3 mm
Active geometry	Core diameter 155 mm; magnet height 64 mm
Shaft	Spline
Cooling	Surface air cooling (convection/air over surface)
Temperature sensor	KTY84/130
Operating temperature	70 to 120 °C (peak 150 °C)
Ingress protection	IP67
Power connection	13 mm ² phase conductors (without insulation); M8 lugs
Phase cable length	Yellow 230 ±20 mm; Blue 280 ±20 mm; Green 330 ±20 mm
Phase identification	U=Blue; V=Green; W=Yellow
Mass	12.8 kg

Typical applications

- **E-motorcycle** (light road / enduro) with primary transmission and an encoder-based FOC inverter.
- **Electric dirt bike**: dynamic use with high transient loads (burst current).

- **Electric go-kart / buggy** focused on performance (repeated acceleration, wide speed variation).
- **Small electrified vehicles** (light platforms) in a ~96 V architecture with tight packaging and mass constraints.

Recommended integration

- **System compatibility (electrical/control)**
 - Select an inverter supporting **PMSM IPM** in **FOC**, capable of **125 A continuous** and handling peaks consistent with **302 A burst**, according to the mission profile and thermal design.
 - Use the **encoder feedback** for commutation and the speed/torque control loop; implement clean signal routing and sensor supply according to the inverter architecture.
 - Integrate the **KTY84/130 sensor** into the protection logic: warning thresholds, torque reduction, shutdown on overtemperature.
- **Parameterization and configuration**
 - Calibrate voltage/current limits in line with the **86–113 V** range and the rated/peak targets; set burst current according to allowable duration and repetition at system level.
 - Define rotation direction and phase mapping (u/v/w) during commissioning, then freeze the configuration (wiring documentation + production control).
- **Mechanical layout and ventilation**
 - Design the mechanical interface around the **spline shaft** with strict control of alignment and loads (transmission, chain/belt tension, vibration).
 - With **surface air cooling**, place the motor in a ventilated area, leverage heat exchange surfaces, and implement derating in hot ambient or low airflow conditions.
- **Cable sizing and routing**
 - Size the phase links from the **13 mm²** conductors and **M8** lugs; minimize lengths, avoid loops, and secure the cable exits mechanically (anti-vibration/strain relief).
- **Electrical protections and safety chain**
 - Structure the DC chain: DC bus fuse(s), main contactor, precharge, emergency stop, and a cut-off strategy compatible with traction/regeneration (depending on the inverter).
 - Implement fault supervision: overcurrent, overtemperature, encoder loss, DC bus over/undervoltage, speed/torque inconsistencies.
- **EMC, diagnostics and maintenance**
 - Physically separate power and signals, control return paths/grounds, and protect/filter encoder and PWM inputs according to inverter recommendations.
 - Plan for maintenance access: connector inspection, lug torque checks, temperature monitoring, fault event tracking and inverter parameter traceability.

Operating conditions

- Power and torque levels require a properly sized **battery + inverter + cabling + cooling** system for the target currents (up to **125 A continuous** and **302 A burst** recommended).
- Thermal performance depends directly on air cooling and the environment (ambient temperature, enclosure, airflow velocity).
- **IP67** must be evaluated at the integrated system level: effective sealing depends on the mechanical architecture, cable exits and interface management.

- Final compliance (EMC, electrical safety, environmental robustness) results from the complete integration and remains the integrator's responsibility.

The information above is provided for **technical and indicative** purposes to support design and integration work.

Performance, robustness and compliance depend on real operating conditions, inverter parameterization, and the electrical/mechanical/thermal integration of the complete system. Final validation (functional, thermal, EMC and safety) is required before commissioning.

© EVEA Distribution – All rights reserved – contact@evea-solutions.com

This document is the exclusive property of EVEA Distribution. Any reproduction or distribution, even partial, is prohibited without prior written authorization.

The information contained in this datasheet is provided for information purposes only and may be modified without notice. This document does not constitute a contractual commitment.